Wymiana cewek zapłonowych

i stanowi element mocowania silnika do konstrukcji samolotu. Najczęściej budowane były w układzie gwiazdowym, rzadziej podwójnej gwiazdy, sporadycznie w układzie przeciwbieżnym. Przede wszystkim silniki rotacyjne stosowane były j

Wymiana cewek zapłonowych cewki zapłonowe skv

Licencję od nich zakupiła

Silnik rotacyjny ? rodzaj lotniczego silnika spalinowego o zapłonie iskrowym, w którym obraca się kadłub silnika z cylindrami, a wał korbowy jest nieruchomy i stanowi element mocowania silnika do konstrukcji samolotu. Najczęściej budowane były w układzie gwiazdowym, rzadziej podwójnej gwiazdy, sporadycznie w układzie przeciwbieżnym. Przede wszystkim silniki rotacyjne stosowane były jako silniki lotnicze, gdzie kadłub silnika był połączony ze śmigłem. Jest to odwrócenie zasady mocowania typowego silnika gwiazdowego, który jest nieruchomy, a w którym wał korbowy jest ruchomy i połączony ze śmigłem. Mieszanka paliwowo-powietrzna w silnikach rotacyjnych była dostarczana przez wał korbowy. Dolot realizowany był poprzez szczeliny w cylindrze (silnik dwusuwowy) lub poprzez zawory w głowicy (silnik czterosuwowy). Natomiast wydech był zawsze poprzez otwierany popychaczem zawór w głowicy.
Silnik rotacyjny w układzie podwójnej gwiazdy

Silnik rotacyjny został po raz pierwszy szeroko zastosowany przez Francuzów ? braci Laurenta i Louisa Séguin, którzy zaczęli produkować silniki pod nazwą Gnôme. Licencję od nich zakupiła m.in. niemiecka firma Oberursel. Silniki rotacyjne stosowane były szeroko w początkach lotnictwa i w okresie I wojny światowej do napędu lekkich samolotów, w tym wielu ówczesnych myśliwców (np. Nieuport 11, Fokker E.III). Osiągały one moc od 50 KM, przez ok. 100 KM (typowe silniki) do ok. 200 KM. Oprócz lotnictwa, sporadycznie silniki rotacyjne były używane do napędu samochodów lub motocykli (Megola).

Źródło: https://pl.wikipedia.org/wiki/Silnik_rotacyjny


Turbodziura

Turbodziura to czas zwłoki pomiędzy zadziałaniem czynnika sterującego (np. zdecydowanym wciśnięciem pedału gazu) a reakcją silnika doładowanego przez turbosprężarkę na to zadziałanie.

Zjawisko jest wynikiem opóźnienia (przesunięcia fazy) pomiędzy chwilowym wydatkiem spalin a zapotrzebowaniem na powietrze w tym momencie w nieustalonych warunkach pracy silnika. Jest wynikiem bezwładności wirnika turbosprężarki i gazodynamicznej więzi pomiędzy zespołem turbosprężarki a silnikiem. Sprężarki mechaniczne nie wykazują tego ograniczenia.

Aby zmniejszyć uciążliwość tego zjawiska, stosuje się różne metody. Stosuje się na przykład zmniejszanie bezwładności wirnika (przez wykonanie go z lżejszych materiałów, na przykład z ceramiki). W silnikach wysokoprężnych, gdzie jest duży wydatek spalin, problem jest mniejszy. Można stosować przewymiarowaną turbosprężarkę i zawory upustowe ograniczające maksymalne ciśnienie doładowania. Możliwe jest stosowanie zespołu dwóch mniejszych turbosprężarek (popularne w silnikach widlastych). Turbosprężarka ze zmiennym kątem łopatek kierujących, zapewniając w miarę stałe obroty wirnika, jest prawdopodobnie najlepszym rozwiązaniem problemu. W zaawansowanych technicznie silnikach iskrowych stosuje się doładowanie dwusystemowe - przy niższych mocach (i małym wydatku spalin) aktywne jest doładowanie mechaniczne, przy większych mocach włącza się do obiegu turbosprężarka - jak w silnikach TSI.

Źródło: http://pl.wikipedia.org/wiki/Turbodziura


Jak jeździć z turbo?

Charakterystyka silników turbodoładowanych znacznie różni się od tych wolnossących. Różnice dotyczą nie tylko samej mocy czy dynamiki silnika ale i sposobu jego eksploatacji.

Pierwszą ważną różnicą jest to, że turbosprężarka jest w stanie tłoczyć wystarczająco dużo powietrza dopiero jeśli jej wirnik osiągnie wysoki pułap obrotów. Aby to miało miejsce to silnik musi osiągnąć odpowiednio wysokie obroty. Do tego momentu pracuje jak jednostka wolnossąca - na podciśnieniu. Czas od wolnych obrotów silnika do pułapu doładowania turbiny powoduje efekt "turbo dziury". Dlatego aby silnik osiągał optymalne parametry mocy należy zmieniać biegi tak aby obroty pozostawały w zakresie doładowania.

Drugą ważną różnicą jest to, że za ostra jazda na zimnym silniku lub też natychmiastowe wyłączenie silnika po dłuższej trasie powodują bardzo szybkie zużywanie turbiny. Dzieje się tak dlatego, że sprężarka jest smarowana olejem silnikowym - to jest ten sam obieg. Kiedy olej jest jeszcze zimny to jest zbyt gęsty aby efektywnie smarować turbinę - więc przy pełnych obrotach będzie się ona zacierać. Natomiast po dłuższej jeździe turbina będzie bardzo nagrzana - jeśli nie pozostawimy silnika pracującego przez kilka minut nie zdąży się ona schłodzić - co będzie powodowało uszkodzenia.

Tak więc sposób na zniszczenie turbiny - pełen gaz na zimnym silniku a później po maksymalnym rozgrzaniu - natychmiastowe zgaszenie. Przy takim traktowaniu nawet nowa turbina padnie bardzo szybko.



© 2019 http://tyco.com.pl/